# Amps to Kilowatts Calculator

* Use e for scientific notation. E.g: 5e3, 4e-8, 1.45e12

### DC amps to kilowatts calculation

The power *P* in kilowatts (kW) is equal to the current *I* in amps (A), times the voltage *V* in volts (V) divided by 1000:

*P*_{(kW)} = *I*_{(A)}* *×* V*_{(V)} / 1000

### AC single phase amps to kilowatts calculation

The power *P* in kilowatts (kW) is equal to the power factor *PF* times the phase current *I* in amps (A), times the RMS voltage *V* in volts (V) divided by 1000:

*P*_{(kW)} = * PF *×* I*_{(A)}* *×* V*_{(V)} / 1000

## AC three phase amps to kilowatts calculation

#### Calculation with line to line voltage

The power *P* in kilowatts (kW) is equal to square root of 3 times the power factor *PF* times the phase current *I* in amps (A), times the line to line RMS voltage *V*_{L-L} in volts (V) divided by 1000:

*P*_{(kW)} = *√*3
× * PF *×* I*_{(A)}* *×* V*_{L-L (V)} / 1000

#### Calculation with line to neutral voltage

The power *P* in kilowatts (kW) is equal to 3 times the power factor*PF* times the phase current *I* in amps (A), times the line to neutral RMS voltage *V*_{L-N} in volts (V) divided by 1000:

*P*_{(kW)} = 3 × * PF *×* I*_{(A)}* *×* V*_{L-N (V)} / 1000

## Typical power factor values

Do not use typical power factor values for accurate calculations.

Device | Typical power factor |
---|---|

Resistive load | 1 |

Fluorescent lamp | 0.95 |

Incandescent lamp | 1 |

Induction motor full load | 0.85 |

Induction motor no load | 0.35 |

Resistive oven | 1 |

Synchronous motor | 0.9 |